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bifurcation problems where there is an interaction between
two different modes. We indicate a general methodologyQualitatively incorrect bifurcation diagrams are computed unless

the symmetries both of the solutions and of the underlying differen- for grid design using the symmetries of the underlying
tial equation are properly accounted for. In the context of the compu- partial differential equation and of the solutions it is de-
tation of solutions to partial differential equations using the finite sired to compute.
element method, this requires careful thought when designing a

We assume that the particular solutions of interest aresuitable computational domain and corresponding grid. Here we
periodic: analysis (e.g. linear stability analysis) of the par-consider the problem of computing the interaction of hexagon and

roll solutions bifurcating from a spatially uniform equilibrium solu- tial differential equation often indicates the wavenumbers
tion of an E(2) equivariant partial differential equation. As an exam- of the solutions on the branches passing through the bifur-
ple of where such an interaction occurs we consider a partial differ- cation point. A finite domain is chosen which will allow a
ential equation describing the directional solidification of a dilute

small number of wavelengths of these solutions; the do-binary alloy. We show that if the symmetry is not taken into account
main can subsequently be extended by translation andthen spurious disconnections can occur. We describe how to over-

come this problem by constructing novel grids which have hexago- reflection to cover the whole plane. We note that if this is
nal symmetry and enough translational symmetry to enable the to be done, then only geometries which tile the whole plane
computation of the correct bifurcation structure. Q 1997 Academic Press can be used; for example, triangles, squares, rectangles, and

hexagons.
The original partial differential equation on the infinite

domain often has some symmetry: in the case we consider1. INTRODUCTION
here, the equation is invariant under all rotations, reflec-
tions, and translations of the (x, y)-plane, i.e., under theThe domains of partial differential equations modeling

real phenomena are often taken to be infinite in order operation of the Euclidean symmetry group, E(2). By im-
posing boundary conditions, choosing a computational do-to simplify theoretical analysis. Whilst this leads to many

valuable results, there is often a need to perform compli- main, and discretising, we inevitably restrict the symmetry
of the computational problem to a subgroup of E(2). Thismentary numerical computations. These computations

have to be carried out on a finite domain, whether it be has two effects: first, it limits the solutions which can be
computed; and second, because certain disturbances areover a finite spatial domain as in a finite-element method

or over a finite frequency range as in spectral methods. effectively suppressed by the grid, it may stabilise solutions
which would be unstable in the full problem. It is clearThe choice of computational domain is influenced strongly

by the nature of the expected solutions. For example, the that the domain which should be chosen and the way it is
discretised depends on the question of primary interest.expected solution may be such that coordinate transforma-

tions may be used to map the infinite domain to a finite In our case, the motivation is based on the physical obser-
vation that, in a variety of physical systems, both roll andregion, or the solution may be periodic allowing the prob-

lem to be solved over some finite part of the periodic hexagonal solutions are seen and that an exchange of stabil-
ity between the two can occur. We are therefore interestedstructure. It is the latter situation that we assume to hold.

Given the periodicity, we still have to decide on the in designing a grid which can be used to compute the
interaction of hexagons and rolls. This kind of modal inter-exact choice of domain, what boundary conditions are ap-

propriate, and the way the domain should be discretised. action arises in the well-known Rayleigh–Bénard problem
and our methodology is applicable there; the example weIn this paper we address these questions, in the context

of the finite element method, for one particular class of present is a model problem in crystal growth. This problem
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is introduced in Section 2. (We refer to the two-dimen- Our initial interest is to compute the branches which
bifurcate as e varies. In spite of the fact that, for e . ec ,sional structures as ‘‘rolls’’ by analogy with the Rayleigh–

Bénard problem, although in the context of crystal-growth the horizontally unbounded planar interface is unstable to
a band of wavenumbers about kc , we consider only theproblems, they might be better described as ‘‘bands.’’)

In Section 3 we show that if proper account of the sym- bifurcation structure associated with the critical wave
number kc . The physical justification for this is that al-metry is not made, then the bifurcation structure that is

computed is qualitatively incorrect. We go on to show how though model equations like (1) are defined on the infinite
plane, in any real physical situation the domain will beto improve the grid design. The accuracy of the computa-

tions carried out on the different grids is compared in finite. In this case, boundary conditions select out only
those solutions that have wavelengths which ‘‘fit’’ in theSection 4.
domain, and solutions with neighbouring wavenumbers

2. SOLIDIFICATION PROBLEM are suppressed.
Brattkus and Davis perform a local nonlinear analysis

The example considered here arises in the unidirectional of their equation about n 5 1/3 for three-dimensional hex-
solidification of a dilute binary alloy. As the melt is solidi- agonal disturbances. This results in the bifurcation struc-
fied, a boundary forms between the liquid and solid phases. ture presented schematically in Fig. 1. This shows how a
The shape of this interface during the solidification affects measure of the magnitude of the solution (vertical axis,
the final material properties of the solid and is thus of not drawn) changes as the control parameter, e, is varied.
great industrial significance. If the solidification takes place The convention that stable solutions are marked with solid
sufficiently slowly then the interface remains planar, but lines whilst unstable solutions are marked with dashed
at greater rates this planar state becomes unstable and lines is used. Furthermore, where there is more than one
both roll and hexagon morphologies are observed. Many bifurcating branch related by symmetry, for simplicity we
simplified models have been constructed to investigate draw a single branch. For e , ec the trivial solution repre-
these features: we consider a long-wave equation derived senting the planar interface is stable. At ec there is a multi-
by Brattkus and Davis [1].

Brattkus and Davis’ equation is

Htt 2 =2Ht 1
1
4

(1 2 n2)=4H 1 =2H 1 e21H

5 Ht=
2H 1 u=2H u2t 2

1
2

(1 2 n)=2(u=Hu2) (1)

2 n= · (=2H=H) 2
1
2

= · (u=Hu2=H).

It is a partial differential equation describing the evolution
with time t of the interface shape z 5 H(x, y, t) from an
initially planar state z 5 0, where (x, y, z) is a rectangular
Cartesian system. It contains two parameters, a scaled
‘‘morphological parameter,’’ e, and a scaled ‘‘segregation
coefficient,’’ n. Both e and n are strictly positive. Of prime
importance for the discussion below is that this partial
differential equation is defined over the whole (x, y)-plane
and has E(2) symmetry. A consequence of this symmetry
is the existence of the trivial solution H 5 0, in this case
representing the planar-interface solution. This is the only
solution which has the full symmetry of the equation.
Linear analysis shows that, for any given n, this solution
is stable, providing e , ec , where ec 5 1 2 n2. At ec the
interface becomes unstable to disturbances of wavenumber

FIG. 1. Schematic bifurcation diagram for the local analysis of Bratt-kc given by
kus and Davis’ equation. ec marks the point where the planar solution
becomes unstable, L is a limit point on the hexagonal solution branch,
S a symmetry breaking point on the roll branch, and T a transcriticalk2

c 5
2

1 2 n2 .
bifurcation point.



20 SKELDON, CLIFFE, AND RILEY

ple bifurcation giving rise to both hexagon and roll solu- where, without loss of generality,
tions with the same wave number. In the neighbourhood
of ec both these solutions are unstable; however, a limit

k1 5 kc(1, 0), k2 5 kc S1
2

,
Ï3
2 D, k3 5 kc S2

1
2

,
Ï3
2 D.point at L stabilises the branch of hexagons whilst a sym-

metry-breaking bifurcation at S stabilises the roll solutions.
The secondary branch bifurcating from S intersects the

Then,hexagonal branch at T in a transcritical bifurcation. This
transcritical bifurcation once again destabilises the hexago-
nal branch.

Hhex(x, y) 5 cos(kcx) 1 2 cos S1
2

kcxD cos SÏ3
2

kcyD,This bifurcation structure is one of the scenarios which
is given by Buzano and Golubitsky [2] who study problems
whose solutions are doubly periodic with respect to the

andhexagonal lattice in the plane. Golubitsky et al. [3] consider
a similar generic bifurcation problem but with an additional

Hrolls(x, y) 5 cos(kcx). (2)reflection symmetry. This forces the bifurcation to the hex-
agonal solutions to be a symmetry-breaking bifurcation
rather than a transcritical bifurcation. In the case of the Hence, the rolls have a periodicity of 1/kc in the x-coordi-
Brattkus and Davis equation, this latter situation corre- nate and are not dependent on y: they appear as rolls
sponds to the case n 5 1/3. Knobloch [4] has also considered lying parallel to the y-axis. In contrast, hexagons have a
the local bifurcation structure of a number of long-wave- periodicity of 2/kc in the x-coordinate and of 2/Ï3kc in
length convection problems which have a steady-state form the y-coordinate. McFadden et al. [6] point out that if a
similar to Eq. (1). According to his classification, Brattkus rectangular computational domain of aspect ratio Ï3 is
and Davis’ equation is case B, where c 5 0 and b ? d. used then both hexagons and rolls solutions ‘‘fit’’ into this

Equation (1) is a strongly nonlinear equation: in its deri- domain. Furthermore, if a rectangle of size 2/kc 3
vation it is not assumed that the interface deformation is 2/Ï3kc is used, then each rectangle can contain two x-roll
small. Our original interest was to extend Brattkus and wavelengths or one hexagonal structure. The use of Neu-
Davis’ weakly nonlinear analysis to higher amplitude by mann boundary conditions allows the computation of both
the use of numerical path-following and bifurcation meth- hexagons and rolls on a quarter of this domain, that is, on
ods [5]. This investigation led to the issue of what is an a rectangle of 1/kc by 1/Ï3kc . McFadden et al. discretise
appropriate grid to use to compute the hexagon-roll inter- this domain with rectangular elements and point out that,
action. It is this question of grid design which is presently although the resulting grid does support hexagonal-like
discussed: for a fuller discussion to the background to the solutions, it does not have hexagonal symmetry: for exam-
problem we refer the reader to [5]. ple, the grid is not invariant when it is rotated through

In [5] we found that only for values of n close to 1/3 does 608. As a consequence, the solutions cannot have exact
the bifurcation structure of Fig. 1 occur at small gradients of hexagonal symmetry.
the interface. Hence, it is only for n near 1/3 that we can Following McFadden et al., we used a rectangular do-
reliably compute solutions to Eq. (1). For this reason, all main of 1/kc by 1/Ï3kc . A mixed finite element method,
the computations presented here were carried out at the similar in nature to the mixed method used to solve the
fixed value of n 5 0.35. biharmonic equation (see Chapter 7 of [7]) was then imple-

mented. Functions A, B, and C were defined so that

3. GRID DESIGN FOR THE COMPUTATION OF
A 5 Ht 2 =2H 2 u=H u2HEXAGONS AND ROLLS

B 5 =2HRoll solutions to (1) may be represented as
C 5 u=H u2,

Hrolls(x, y) 5 cos(k1 · r),
which enabled Eq. (1) to be rewritten in the weak form,

where k1 is the wave vector associated with the disturbance.
Hexagonal solutions result by superimposing three such E

D
HF­A

­t
1 e21H 1 (1 2 A 2 B 2 C)BGN1roll solutions with the same wavelength, but with their

wave vectors aligned at 608. That is,

2 F1
4

(1 2 n2)
­B
­x

1
1
2

(1 2 n)
­C
­x

1 SnB 1
1
2

CD ­H
­xG ­N1

­xHhex(x, y) 5 cos(k1 · r) 1 cos(k2 · r) 1 cos(k3 · r),
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contour plot. If the solutions had hexagonal symmetry,
2 F1

4
(1 2 n2)

­B
­y

1
1
2

(1 2 n)
­C
­y

1 SnB 1
1
2

CD ­H
­yG ­N1

­y then they would be invariant when rotated through 608, and
hence the separation between the centre of each triangular
region and its two neighbours would be the same. On close1 F­H

­t
2 A 2 B 2 CGN2 1 BN3 1

­H
­x

­N3

­x
1

­H
­y

­N3

­y inspection it is seen that this is not the case. In accordance
with the local analysis, the bifurcation to these ‘‘hexagons’’

1 FC 2 S­H
­xD2

2 S­H
­yD2GN4J dx dy 5 0.

is transcritical and the solution is initially unstable. These
solutions are stabilised at L, which occurs very close to the
initial instability. There is a symmetry-breaking bifurcationHere, Ni are the test functions. The test functions are cho-

sen so that these is no contribution from the boundary on the roll branch at S, again in agreement with the local
analysis. However, the transcritical bifurcation (T in Fig. 1)integral. Note that these equations contain only first deriva-

tives of A, B, C, and H. In our finite-element approxima- has unfolded and in its place are two limit points L1 and
L2 . Consequently, there is a continuous transition fromtion of these weak equations we expanded A, B, C, and

H in quadratic functions. A Galerkin formulation was the hexagon-like solutions, which arise at ec , to the roll
solutions at S.adopted in which the test functions Ni were chosen from

the same set of quadratic basis functions. The resulting It might be argued that quantitatively the hexagon-like
solutions are close to the true hexagonal solutions of theintegrals were evaluated numerically by Gauss quadrature.

The nonlinear algebraic equations for the unknown nodal partial differential equation and that the slight loss of sym-
metry is not important. However, close to T in Fig. 1, thevalues of A, B, C, and H were linearized using a Newton–

Raphson procedure and the solution of the linear set of computed structure is qualitatively incorrect and one of the
solution branches becomes disconnected. Path-followingequations at each iteration was obtained using a direct

frontal solver. Initially the domain was divided into 8 3 6 methods provide an excellent means of computing solu-
tions to nonlinear problems by systematically workingnine-noded rectangular elements, though, as discussed be-

low, this was subsequently modified and six-noded triangu- along solution branches, finding bifurcation points, switch-
ing to bifurcating branches, and so on. By their very nature,lar elements were used instead.

In order to solve the resulting discretised equation, the they are not designed to find disconnected branches ab
initio. It is possible to compute disconnected branches by,software package ENTWIFE, which incorporates extended

systems and path-following methods [8], was used. The for example, switching onto a bifurcated branch and then
unfolding the system. Locating disconnected branchesprecise details of this code are not relevant here: the dis-

crepancies between the local analytical results and the com- about which there is no prior knowledge is, however, a
matter of luck. They can be computed by a fortuitousputational results, which we discuss below, occur as a result

of the lack of symmetry in the discretisation rather than choice of initial guess in the Newton–Raphson procedure,
but we know of no systematic means of locating them saveof the numerical algorithmic features of this code. Our

results, using the rectangular grid, are presented in the for the possibility of introducing unphysical symmetries
and regarding the associated bifurcation points of the newform of a bifurcation diagram in Fig. 2. Here, the vertical

axis (not drawn) indicates a measure of the solution, and problem as organising centres for the physical problem
[10]. In the present case, it is only the discrepancy withthe bifurcation parameter e is plotted along the horizontal

axis. Whatever the measure chosen to represent the solu- the local analysis which led us to search for, and find, the
disconnected solution branch. In our example, this branchtion, the bifurcation diagram will be qualitatively the same,

although with some choices the result can be hard to inter- consists of unstable, and therefore physically unrealisable,
solutions; but there is no reason why this should alwayspret. In the case presented, we have used the value of the

depth to which the interface dips into the solid at the upper be the case. Hence, not incorporating the symmetry of the
solutions in the grid may result in missing important stableleft-hand corner of our domain. Computed contour plots

of H are drawn for several points along the branches. Note solutions: this is no longer an insignificant effect. By re-
turning to the original problem and redesigning our grid,that these contour plots are constructed by reflecting and

translating our original computational domain so that the we show how the computed bifurcation structure can be
corrected for the example given here, without any increasepieces shown consist of 16 copies, i.e., they cover a 4/kc 3

4/Ï3kc region of the (x, y)-plane. in the cost of the computations.
The difficulty is that both hexagons and rolls must beAt ec , in agreement with Brattkus and Davis’ local anal-

ysis, there is a multiple bifurcation to both roll- and computed: if only rolls were required then the rectangular
grid used above would create no problems; if only hexagonshexagon-like solutions. The solutions on the ‘‘hexagonal’’

branch do not have hexagonal symmetry. This is most were required a grid with a hexagonal boundary descret-
ised with equilateral triangles could be used. A hexagonalreadily observed by considering the six triangular regions

which surround the central set of concentric circles in each domain with Neumann or Dirichlet boundary conditions,



22 SKELDON, CLIFFE, AND RILEY

FIG. 2. Computed bifurcation diagram using a rectangular grid of rectangular elements for n 5 0.35 for the Brattkus–Davis equation. At e 5

0.8775 the planar solution becomes unstable. L marks the limit point on the hexagonal solutions branch and S the symmetry breaking bifurcation
on the roll branch. L1 and L2 are two further limit points. Contour plots of the solutions are shown along some of the branches.

however, cannot support roll solutions. In fact, in order to the plane it is invariant under the operation of the hexago-
nal group. Given a point on the plane and an axis throughcompute rolls of the form (2), using Neumann or Dirichlet

boundary conditions, the computational domain has to be that point, the hexagonal symmetry group is generated by
a rotation through 608 (in an anticlockwise direction, say)rectangular with sides aligned parallel and perpendicular

to the x-axis. Therefore, as in our initial computations, we and a reflection in the axis. Hence we require that the grid
is invariant under these same two operations. We haveuse a domain with dimensions 1/kc by 1/Ï3kc , so that one

roll fits into the rectangle, and once again use Neumann already accepted that the boundary of our computational
domain be rectangular (rectangle ACDF in Fig. 3). If weboundary conditions. This domain can be used to tessellate

the plane by reflecting in the x-axis and y-axis to produce now insist that this grid is invariant under rotations through
608 about A when it is used to tessellate the plane, wea template of four rectangles of total size 2/kc by

2/Ï3kc . To tile the entire plane, this template is translated generate a number of additional lines as follows: rotating
AB through 608 gives the line AE; rotating AF extendedby (2n/kc , 2m/Ï3kc) where n, m [ Z.

In order that the discretised partial differential equation through 3008 (i.e. 5 3 608) gives AD; rotating FE through
3008 gives OB. In order to take account of the reflectionhas hexagonal symmetry, the computational domain must

be discretised in such a way that when it is used to tessellate symmetry of the hexagonal group, we also require that the
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FIG. 3. Invariant lines in a hexagonally symmetric, rectangular grid.

grid is invariant under reflection in one of the invariant
lines. For simplicity of description, we choose the axis
AD as our reflection axis, although which invariant line is
chosen is not important. This is because the equivalent
operation to reflection in the other axes through A may
be obtained by combinations of reflections in AD and
rotations about A. Thus, reflecting OB in AD adds the
line OE, and reflecting the line DE in AD results in the
line DB. No further lines are generated by rotating any of
the given lines in Fig. 3 through 608 about A or by reflecting FIG. 4. Region of the plane tessellated with the grid of Fig. 3. The
in the axes AF, AE, AD, and AC that pass through A. grid of Fig. 3 is shown in bold and the same grid rotated by 608 is shown

by the dotted lines.Our resulting hexagonally symmetric grid consists of 6
similar triangles. In Fig. 4 we show a region of the plane
tessellated as above with this rectangle. The computational
grid is marked in bold and this grid rotated through 608 is the x-coordinate. In order to compute this bifurcation as
marked with dashed lines to demonstrate clearly that this truly symmetry breaking, rather than transcritical, the grid
nonintuitive grid really does have the rotational symmetry must contain the symmetry which is broken. No grid can
(as well as the reflection symmetry) of the hexagonal group. be designed that is invariant under all translations; but we

The first grid we used for computations consisted of 48 can compromise and insist that the grid is invariant under
rectangles (8 by 6 elements). A grid with similar resolution translation by half of a roll wavelength. This is the simplest
may be constructed by dividing each of the six triangles choice which includes a symmetry which is broken at the
of Fig. 3 into 16 elements. The six triangles are all similar, bifurcation to the roll solution, and the bifurcation will
so, providing all the triangles are discretised in the same therefore be computed correctly. Insisting that the grid is
way, there is no difficulty in matching nodes along the invariant under translations of half of a roll wavelength
common sides of the triangles and the hexagonal symmetry (1/2kc) also guarantees that our grid will contain the roll
is retained. One particular choice is shown in Fig. 5. Com-
puting with the grid shown in Fig. 5 allows the computation
of the hexagons correctly: the discretisation no longer
allows the continuous deformation from a hexagon to a roll
without going through a bifurcation, hence the transcritical
bifurcation is not unfolded (see below).

In the original partial differential equation on an infinite
domain, a given roll solution is invariant under translations
through an integer number of wavelengths. In order to
compute the roll solutions correctly the grid must therefore
be invariant under translation through the roll wavelength,
1/kc . Note that the grid of Fig. 3 does not feature this
invariance. Furthermore, rolls bifurcating from the trivial FIG. 5. Grid 3—Hexagonally symmetric rectangular grid of Fig. 3

discretised to give a grid of 96 elements.solution break the continuous translational symmetry in
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symmetry of translation through an integer multiple of
wavelengths. Note that in the original partial differential
equation, roll solutions of all orientations and all phases
are allowed. The alignment of the computational domain
allows the computation of only one roll orientation and
the boundary conditions select the phase of this solution.
Furthermore, true rolls are one-dimensional in nature and
have no dependence on the y-coordinate. That is, they are
invariant under arbitrary translations in the y-direction.
Once again, no grid can possibly have this invariance.

FIG. 6. Grid 4—96 element grid which is both hexagonally symmetricRequiring that the grid of Fig. 3 be invariant when trans- and invariant under translations by 1/2kc .
lated through 1/2kc whilst still maintaining the hexagonal
invariance results in the 96-element grid of Fig. 6. An
interesting point is that this grid consists of 16 rectangles system defines necessary conditions for the determination
containing scaled down versions of the hexagonally sym- of a limit point, it is not sufficient to exclude the occurrence
metric grid of Fig. 3. The triangles are all similar, so once of all higher codimension bifurcations. In order to rule out
again a refinement of the grid may be produced by dis- these possibilities, ‘‘side constraints’’ are also calculated.
cretising each triangle in an identical way. One example In the case of the limit point, these are
of a 384-element grid where each triangle has been split
into 4 is shown in Fig. 7. (6)cofxxfofo

4. RESULTS and

It is relatively easy to find whether computation with a (7)cofl ,
given grid results in the disconnection of the transcritical
bifurcation or not: if the transcritical bifurcation is discon- where co is the left eigenvector of the Jacobian. These
nected there is a continuous change from hexagon-like expressions must both be nonzero for the bifurcation to be
solutions to rolls; if not, then there is a bifurcation along a limit point. If expression (6) is zero, then the bifurcation is
the hexagonal solution branch, and the hexagonal solutions either a nondegenerate hysteresis point or an even higher
themselves may be followed to higher and higher ampli- codimension bifurcation point. If expression (7) is zero,
tudes. However, to compare the performance of different then the bifurcation is a transcritical bifurcation point, or
grids in the computation of the rolls we need to be able again, a higher codimension bifurcation point.
to find and identify different types of bifurcation. This In a similar way, there is an extended system for the
follows naturally from the path-following methods incor- computation of a transcritical bifurcation point and two
porated in ENTWIFE which are based on the scheme of side constraints. In this case, the side constraints monitor
Jepson and Spence [8] and the ideas of singularity theory whether a bifurcation satisfying the defining conditions is
[11]. Under this scheme, each type of bifurcation point has truly transcritical or whether it is a bifurcation of sym-
a set of defining conditions. For example, if we wish to metry-breaking or asymmetric-cusp type. Thus, by com-
find a limit point (a codimension 0 bifurcation) of the set puting the bifurcation points of Fig. 1 (where possible) and
of equations monitoring the corresponding side constraints, the perfor-

mance of different grids could be evaluated. In each case,
(3)f(x, l) 5 0, x [ X,

where X is the space of solutions x and l is the control
parameter, then not only must Eq. (3) be satisfied, but also
the defining conditions for the limit point. That is,

fx(x0 , l)f 5 0 (4)

l(f) 2 1 5 0. (5)

Here f is the eigenvector of the Jacobian matrix fx(x0 , l)
and Eq. (5) is a normalisation of f. Together, Eqs. (3)–(5)

FIG. 7. Grid 5—A refinement of grid 4 producing a 384-element grid.are referred to as an extended system. Whilst this extended



COMPUTATION OF A HEXAGON-ROLL INTERACTION 25

TABLE I TABLE III

Computation of the Limit Point on the Connected Hexagonal Computation of the Transcritical Bifurcation on the
Hexagonal Solution Branch (T of Fig. 1) Using Grids 3–5Solution Branch (L1 of Fig. 2) Using Grids 1 and 2

Transcritical Monitor Grid e Pitchfork Monitor Asymmetric Cusp Monitor

Non-degenerate First Second 3 0.91738 0.0509 20.4431
Grid e Hysteresis Monitor Parameter Parameter 4 0.92623 20.2538 210.54

5 0.92748 0.0560 20.4653
1 0.91048 26.87 3 1022 21.97 3 1022 5.54 3 1022

2 0.92282 28.57 3 1023 26.07 3 1023 2.36 3 1022

zero confirms that the bifurcation points which have been
found are limit points and not some higher codimensionthe extended systems were solved using Newton’s method,
bifurcation point. The separation of the two limit pointswith a convergence criteria such that the norm of the incre-
is smaller for the finer grid (0.00970 instead of 0.03861), butment made to the solution at the final step is of the order
this does not overcome the problem that the disconnectedof the machine rounding error. The computations were
branch would not normally be found at all using path-carried out on the CRAY YMP at the Rutherford Apple-
following methods. It is well known that if too coarse aton Laboratory.
discretisation is used, spurious solutions can result; forFive different grids were used as follows:
example, see Murdoch and Budd [9]. Such problems can

Grid 1: 8 3 6 grid of rectangles: 48 rectangular elements. often be solved in practice by grid refinement. In this case,
however, whilst further grid refinement does serve to de-Grid 2: 16 3 12 grid of rectangles: 192 rectangular ele-
crease the separation of the two limit points, it does notments.
eliminate the disconnection.Grid 3: Hexagonally symmetric grid of 96 triangular

In contrast, all the grids which contain the hexagonalelements (Fig. 5).
symmetry (grids 3–5) do not exhibit this unfolding. Instead,

Grid 4: Hexagonally symmetric grid which is also invari- in agreement with the local analysis,a transcritical bifurca-
ant under translations by 1/2kc (Fig. 6). tion point is found (Table III). This is true even for the

Grid 5: Refinement of grid 4; 384 triangular elements grids 3 and 4 which have the same number of elements
(Fig. 7). as the coarser of the two rectangular grids. None of the

monitors is zero which confirms that the bifurcation is aAs discussed above and illustrated in Fig. 2, the results
transcritical bifurcation and not of some higher codi-using grid 1 disagree qualitatively with the local analysis:
mension.the transcritical bifurcation point of the local analysis is

We now turn to the computation of the bifurcations ofreplaced by two limit points, L1 and L2 . Refining the rectan-
the roll branch. Table IV shows the results of computinggular grid and computing with 4 times as many elements
the bifurcation from the trivial solution to the roll solution(grid 2) does not correct this fundamental problem: there
with the five different grids. This bifurcation is located onis still a continuous change from the hexagonal solution
the basis that it is a transcritical bifurcation point. Theto the roll solution. Table I lists the values at which the
table shows, however, that for all the grids except for grid 3bifurcation L1 is found and the side constraints (monitors)
the pitchfork monitor is zero (to the machine tolerance),for the two grids. This same information for L2 is shown
that is, using these grids, the bifurcation is given correctlyin Table II. The fact that none of the side constraints is

TABLE IVTABLE II

Computation of the Bifurcation from the Trivial Solution toComputation of the Limit Point on the Disconnected
the Roll SolutionHexagonal Solution Branch (L2 of Fig. 2) Using Grids 1 and 2

Grid e Pitchfork MonitorTranscritical Monitor

Non-degenerate First Second 1 0.877500 21.22 3 10213

2 0.877500 23.81 3 10212Grid e Hysteresis Monitor Parameter Parameter
3 0.877500 24.74 3 1025

4 0.877500 26.06 3 102141 0.94909 21.01 3 1022 23.98 3 1022 2.38 3 1021

2 0.93252 29.77 3 1023 7.09 3 1023 23.26 3 1022 5 0.877500 21.94 3 10212
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TABLE V is no reason why this should be the case. Consequently,
physically important solutions may not be accessed by sys-Computation of the Symmetry-Breaking Bifurcation on the
tematic path-following methods, and their computationRoll Branch (S in Fig. 2) Using All Five Grids
must rely on ‘‘lucky strikes.’’

Grid e Pitchfork Monitor Asymmetric Cusp Monitor Here, we have shown that by using the symmetries of the
equations and of the solutions which are to be computed we

1 0.90105 22.66 3 10212 20.431
can design a non-intuitive grid which allows us to produce2 0.90488 23.47 3 10211 20.285
the qualitatively correct bifurcation diagram for the3 0.90465 27.85 3 1024 20.299

4 0.90314 27.54 3 10214 20.338 hexagon-roll interaction. In principle, the underlying mes-
5 0.90502 26.21 3 10213 20.280 sage carries over to other numerical schemes such as finite

difference methods and finite volume methods: that is,
the symmetry of the solutions to be computed should be
respected in the discrete equations.

as symmetry-breaking. As discussed above, grid 3 does
not have the appropriate translational invariance to allow ACKNOWLEDGMENTS
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